
Corrigé du Devoir Libre n◦ 10

Partie I. Séries numériques

1. Théorème de Pringsheim

On se propose de démontrer le

Théorème.— Soit (un) une suite positive et décroissante.

Si la série de terme général converge, alors un = o

(

1

n

)

.

Dans le suite de cette question, un désigne une suite décroissante et positive de nombre réels, telle que
∑

un

converge.

a. Notons pour tout entier n ∈ N, Sn =
n

∑

k=0

uk la somme partielle de rang n.

i. Por tout entier n ∈ N, S2n − Sn =
∑2n

n+1
uk ≥ n u2n par décroissance de la suite u. N

ii. Ainsi, pour tout entier n ∈ N, 0 ≤ 2nu2n ≤ 2
(

S2n−Sn

)

. Comme par hypothèse, la série
∑

un converge,
il en résulte que la suite (Sn) est convergente. La suite (S2n étant extraite de la précédnte, il s’en suit
que S2n − Sn est convergente de limite nulle. Il suffit dès lors d’invoquer le théorème de convergence
par encadrement pour affirmer que 2nu2n est convergente de limite nulle. N

b. En remarquant que pour tout entier n ∈ N, 0 ≤ (2n+1)u2n+1 ≤ (2n+1)u2n = 2n u2n +u2n par monotonie
de u, il découle de la question précédente et du fait que (u2n) étant extraite de u que (2n + 1)u2n+1 est
encadrée par deux suites convergentes de limite 0. On conclut once again par le théorème de coonvergence
par encadrement. N

c. Ainsi les suites extraites de (n un) formées des termes de rangs pairs et impairs sont toutes deux convergentes
de limite 0. Par complémentairté, il en résulte que la suite (n un) est elle-même convergente de limite nulle.

Autrement dit un = o

(

1

n

)

. Ce qui achève la démonstration du théorème de Pringsheim. N

2. Soit (un)n∈N? une suite réelle strictement positive et bornée. On suppose que la série de terme général un est
divergente. Dans cette question on définit pour tout entier naturel non nul n ∈ N

?, la somme partielle de rang

n par Sn =

n
∑

k=1

uk et on introduit la suite (vn)n∈N? définie par

∀n ∈ N
?, vn =

un+1

Sn

a. Comme la suite u est positive (Sn) est croissante. Comme la série de terme général un est divergente, (Sn)
est divergente. D’après le théorème de convergence pour les suites croissantes, j’en déduis que (Sn) est
divergente vers +∞.
D’autre part, par hypothèse la suite u est bornée : il existe donc un réel positif M tel que ∀n ∈ N

?, un ≤ M .
D’où je tire l’estimation –valide pour tout entier naturel non nul n :

0 ≤ vn ≤ M

Sn

Comme d’après la question précédente, la suite (Sn) est divergente vers +∞, j’en déduis par opérations
algébriques puis encadrement que la suite (vn) est convergente de limite 0. N

b. On pose pour tout entier naturel non nul n ∈ N
?, wn = ln(1 + vn).

Soit n un entier naturel non nul , par définition de vn et wn, on a : ln

(

Sn+1

Sn

)

= ln

(

Sn + un+1

Sn

)

=

ln(1 + vn) = wn.
D’autre part, par téléscopage, il vient :

n
∑

k=1

wn =
n

∑

k=1

(lnSn+1 − lnSn) = lnSn+1 − lnS1
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Par hypothèse la suite (Sn) est divergente vers +∞. Par conséquent la somme de partielle de rang n de la
série de terme général wn est équivalente à ln Sn+1 qui diverge vers +∞. Donc

∑

wn diverge. N

c. Comme d’après la question 2.a (vn) est convergente vers 0, je déduis de l’égalité wn = ln(1 + vn) que

wn ∼ vn

Par suite, les séries
∑

wn et
∑

vn sont de même nature. Ainsi,
∑

vn diverge. N

d. Application : Soit u la suite constante égale à 1. Alors u est bornée et la somme partielle de rang n vaut
Sn = n. Par conséquent la série

∑

un est divergente et le résultat de la question précédente s’applique : la
série de terme général vn = 1

Sn
= 1

n
diverge. N

3. Séries de Bertrand

Dans cette dernière question on s’intéresse aux séries de Bertand.

Définition : On appelle série de Bertrand toute série
∑

n≥2
un de terme général

un =
1

nα (lnn)β

où (α, β) ∈ R
2

a. le cas α = 1

i. Soit (un) la suite définie pour tout entier n ≥ 2 par un = 1/n. La somme partielle de rang n vérifie
Sn ∼ lnn. J’en déduis que

un+1

Sn

=
1

(n + 1) Sn

∼ 1

n lnn

Par conséquent les séries –à termes positifs– de termes généraux
1

n lnn
et

un+1

Sn

sont de même nature.

Or, comme la suite u est clairement bornée par 1 et la série harmonique de terme général un est

divrergente, le résultat de la question 2. permet d’affirmer que la série de terme général
un+1

Sn

est

divergente.

En conclusion, la série de terme général
1

n lnn
diverge. N

ii. D’après le théorème de Pringsheim si (un) est une suite de nombre réels décroissante de limite nulle,
alors

∑

un converge ⇒ un = o(1/n)

La réciproque est fausse puisque la suite un =
1

n lnn
est décroissante convergente de limite 0, vérifie

de plus un = o(1/n) mais pourtant la série de terme général un est divergente. N

iii.

• supposons que β ≤ 1 alors pour tout entier n ≥ 2,
1

n (lnn)β
≥ 1

n lnn
≥ 0. Par comparaison il s’en

suit que la série de terme général
1

n (lnn)β
diverge.

• supposons que β > 1. La suite un =
1

n (lnn)β
est décroissante. D’après le Théorème 15.15 du cours,

les séries de termes généraux un et 2k u2k sont de même nature. Or pour tout entier k ∈ N, nous
pouvons écrire

2k u2k =
2k

2k
(

ln(2k)
)β

=
1

(

k ln 2
)β

=
1

(ln 2)β

1

kβ

Comme par hypothèse, β > 1, la série de Riemann de terme général
1

kβ
est convergente.

Ainsi, la série de terme général
1

n (lnn)β
converge.

En conclusion, nous avons démontré que :

La série de terme général
1

n (lnn)β
converge si et seulement si β > 1. N

b. Le cas α 6= 1
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i. Etudions les séries de Bertrand de termes généraux un =
1

n2 lnn
, vn =

lnn

n2
, wn =

1√
n (lnn)26

.

• la première converge par la règle nαun. En effet un = o( 1

n2 ) qui est le terme général d’une série de
Riemann convergente.

• la deuxième converge par la même règle car vn = o( 1

n3/2
) qui est le terme général d’une série de

Riemann convergente.

• la troisième diverge par comparaison puisqu’il existe une constante C > 0 et un entier n0 ∈ N tel
que pour tout entier n ≥ n0, on ait wn ≥ C ( 1

n2/3
) qui est le terme général d’une série de Riemann

divergente. N

ii. Soit β ∈ R un réel quelconque.

• Si α > 1, montrons que la série de terme général un =
1

nα (ln n)β
est convergente.

Pour cela, posons γ = 1+α
2

. On peut noter que 1 < γ < α. Par conséquent, d’après le théorème de
comparaisons des suites de référence :

nγ un =
nγ−α

(lnn)β
−−−−−→
n→+∞

0

D’après la règle “nαun”, il s’en suit que la série de terme général un =
1

nα (lnn)β
est convergente.

• Si α < 1, posons comme précédemment γ = 1+α
2

. On peut noter qu’en ce cas α < γ < 1. Il en résulte
que

nα (lnn)β

nγ
−−−−−→
n→+∞

0

Par conséquent il existe un entier n0 tel que pour tout n ≥ n0, nα (lnn)β ≤ nγ , i.e.

∀n ∈ N, n ≥ n0 ⇒ 1

nα (lnn)β
≥ 1

nγ

Comme la série de Riemann de terme général
1

nγ
est divergente, j’en déduis par le théorème de

comparaison des séries à termes positifs que la série de terme général
1

nα (ln n)β
est elle-même

divergente. N
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Partie II. Variables aléatoires

1. Préliminaires algébriques

On considère les matrices de M2(R) A =

(

5 1
1 5

)

et I =

(

1 0
0 1

)

.

a. i. A2 =

(

26 10
10 26

)

. N

ii. A2 = 10 A − 24 I. N

iii. De l’égalité ci-dessus, je tire − 1

24
(A − 10 I) × A = I. Par conséquent, A est inversible et

A−1 =
−1

24
(A − 10 I) =

−1

24

(

−5 1
1 −5

)

N

b. i. Soit n ∈ N. D’après la relation polynomiale obtenue à la question 1.a, nous avons :

An+2 − 10An+1 + 24An = An ×
(

A2 − 10 A + 24I
)

= An × 0 = 0

N

ii. Montrons par récurrence double sur n l’existence de deux suites (an)n∈N? et (bn)n∈N? , récurrentes
linéaires d’ordre 2, telles que pour tout entier naturel non nul n ∈ N

?

P(n) An =

(

an bn

bn an

)

Initialisation : Comme A =

(

5 1
1 5

)

et A2 =

(

26 10
10 26

)

, a1 = 5, a2 = 26, b1 = 1 et b2 = 10

conviennent.

Hérédité : Soit n ∈ N
? tel que P(n) et P(n + 1) soient vraies. Montrons que P(n + 2) l’est aussi.

Par hypothèse de récuurence et la relation polynomiale obtenue précédemment, il vient

An+2 = 10An+1 − 24An =

(

10an+1 − 24an 10bn+1 − 24bn

10bn+1 − 24bn 10an+1 − 24an

)

Ainsi

An+2 =

(

an+2 bn+2

bn+2 an+2

)

où nous avons posé :
{

an+2 = 10 an+1 −24an

bn+2 = 10 bn+1 −24bn

Conclusion : Nous avons démontré l’existence de deux suites (an) et (bn) telles que

∀n ∈ N
?, An =

(

an bn

bn an

)

De plus les suites (an) et (bn) vérifient les conditions initiales a1 = 5, a2 = 26, b1 = 1 et b2 = 10 et
les relations de récurrence :

∀n ∈ N
?,

{

an+2 = 10 an+1 −24an

bn+2 = 10 bn+1 −24bn
.

N

iii. Pour déterminer l’expression de An en fonction de n, j’explicite an et bn. Ces suites vérifient la même
relation de récurrence double,

∀n ∈ N
?, un+2 = 10 un+1 − 24un.

L’équation caractéristique
X2 − 10X + 24 = 0
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admet pour racines évidentes 4 et 6. Ainsi le terme général de toute suite (un)n∈N? vérifiant cette
relation s’écrit

un = λ 4n + µ 6n

Les conditions initiales déterminent les valeurs de λ et µ. Namely :
Calcul de an :

{

4λ +6µ = 5
16λ +36µ = 26

⇐⇒
{

4λ +6µ = 5
12µ = 6

⇐⇒
{

λ = 1

2

µ = 1

2

D’où

∀n ∈ N
?, an =

1

2

(

4n + 6n
)

Calcul de bn :
{

4λ +6µ = 1
16λ +36µ = 10

⇐⇒
{

4λ +6µ = 1
12µ = 6

⇐⇒
{

λ = − 1

2

µ = 1

2

D’où

∀n ∈ N
?, bn =

1

2

(

6n − 4n
)

N

2. Jeu de boules

On dispose de deux urnes U1 et U2 et d’une pièce de monnaie non truquée.
Initialement, l’urne U1 contient une boule blanche et deux boules noires et l’urne U2 contient deux boules noires.
On considère l’expérience aléatoire e suivante :

• on lance la pièce :
– si l’on obtient pile, on tire une boule de U1,
– si on obtient face, on tire une boule de U2

• puis
– si la boule obtenue est noire, elle est remise dans la même urne
– si elle est blanche elle est changée d’urne.

Pour n entier naturel non nul, on désigne par Xn la variable aléatoire égale au numéro de l’urne dans laquelle
se trouve la boule blanche à l’issue de n répétitions de l’expérience e.

a. Etude de X1

Il est clair que X1(Ω) = {1, 2}. De plus la formule des probabilités totales pour le système complet
d’événements non négligeables U1 et U2 permet de déterminer les probabilités P [X1 = 1] et P [X1 = 2] :

xi 1 2

p[X1 = xi]
5

6

1

6

Nous en déduisons également E(X1) = 7/6 et V (X1) = 5/36. N

b. Relation de récurrence

On réitère à présent l’éxpérience e un certain nombre de fois.
Soit n un entier naturel non nul.

i. Supposons qu’à l’issue de de n répétitions de e la boule blanche se trouve dans l’urne 1. En ce cas, la
situation après n répétitions est la situation initiale :

p
(

[Xn+1 = 1]|[Xn = 1]
)

=
5

6
et p

(

[Xn+1 = 2]|[Xn = 1]
)

=
1

6

N

ii. Supposons que Xn = 2. En échangeant les rôles de U1 et U2 dans la question précédente, nous obtenons :

p
(

[Xn+1 = 1]|[Xn = 2]
)

=
1

6
et p

(

[Xn+1 = 2]|[Xn = 2]
)

=
5

6

N
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iii. D’après la formule des probabilités totales pour le système complet d’événements non négligeables
[Xn = 1], [Xn = 2], il vient :

p[Xn+1 = 1] =
5

6
P [Xn = 1] +

1

6
P [Xn = 2] et p[Xn+1 = 2] =

1

6
P [Xn = 1] +

5

6
P [Xn = 2]

c. Etude de Xn

Notons pour tout entier naturel non nul n ∈ N
?, la matrice colonne Vn =

(

p[Xn = 1]
p[Xn = 2]

)

.

i. D’après la question précédente,

M×Vn =

(

5/6 1/6
1/6 5/6

)

×
(

p[Xn = 1]
p[Xn = 2]

)

=

(

5

6
P [Xn = 1] + 1

6
P [Xn = 2]

1

6
P [Xn = 1] + 5

6
P [Xn = 2]

)

=

(

p[Xn+1 = 1]
p[Xn+1 = 2]

)

= Vn+1.

N

ii. Une récurrence immédiate montre alors que Vn = Mn−1V1, pour tout entier naturel n non nul Vn =
Mn−1 × V1. N

iii. D’après les résultats préliminaires,

Mn−1 =
1

6
An−1 =

1

2

(

1 + (4/6)n−1 1 − (4/6)n−1

1 − (4/6)n−1 1 + (4/6)n−1

)

De l’égalité Vn = Mn−1 × V1 et de V1 =

(

5/6
1/6

)

, nous déduisons facilement :

P [Xn = 1] =
1

2

{

5

6

(

1 + (2/3)n−1
)

+
1

6

(

1 − (2/3)n−1
)

}

P [Xn = 2] =
1

2

{

5

6

(

1 − (2/3)n−1
)

+
1

6

(

1 + (2/3)n−1
)

}

N

d. Par suite

E(Xn) =
(

1+(2/3)n−1
)

(5/12+2/12)+
(

1−(2/3)n−1
)

(1/12+10/12) =
7

12

(

1+(2/3)n−1
)

+
11

12

(

1−(2/3)n−1
)

D’où lim
n→∞

E(Xn) = 18/12 = 3/2. N
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