CORRIGE DU DEVOIR LIBRE N° 10

Partie I. Séries numériques

1. Théoréme de Pringsheim
On se propose de démontrer le

Théoréeme.— Soit (u,,) une suite positive et décroissante.

n

Co o 1
Si la série de terme général converge, alors u, = o — |.

Dans le suite de cette question, u, désigne une suite décroissante et positive de nombre réels, telle que > u,

converge.
n

a. Notons pour tout entier n € N, S, = Z uy la somme partielle de rang n.
k=0

i. Por tout entier n € N, Sg,, — S, =>_ 1 Uk > N Uz, par décroissance de la suite u. A

2n
n+
ii. Ainsi, pour tout entier n € N, 0 < 2nug, < 2 (Sgn —Sn). Comme par hypothese, la série > u,, converge,
il en résulte que la suite (S,,) est convergente. La suite (S2, étant extraite de la précédnte, il s’en suit
que Sa, — S, est convergente de limite nulle. Il suffit des lors d’invoquer le théoreme de convergence

par encadrement pour affirmer que 2nus, est convergente de limite nulle. A

b. En remarquant que pour tout entier n € N, 0 < (2n+1) uap+1 < (2n+1) ug, = 2n ugy, + g, par monotonie
de wu, il découle de la question précédente et du fait que (uo,) étant extraite de u que (2n + 1) ug,41 est
encadrée par deux suites convergentes de limite 0. On conclut once again par le théoréme de coonvergence
par encadrement. A

c. Ainsi les suites extraites de (n u, ) formées des termes de rangs pairs et impairs sont toutes deux convergentes
de limite 0. Par complémentairté, il en résulte que la suite (nu,) est elle-méme convergente de limite nulle.

1
Autrement dit u, = o <—> Ce qui acheve la démonstration du théoréme de Pringsheim. A
n

2. Soit (un)nen+ une suite réelle strictement positive et bornée. On suppose que la série de terme général u,, est
divergente. Dans cette question on définit pour tout entier naturel non nul n € N*, la somme partielle de rang
n

n par S, = Z ug, et on introduit la suite (v, )nen+ définie par
k=1

Un+1
Sn

Vn e N*, v, =

a. Comme la suite u est positive (S,,) est croissante. Comme la série de terme général u,, est divergente, (S,,)
est divergente. D’apres le théoréme de convergence pour les suites croissantes, j’en déduis que (S,,) est
divergente vers +oc.

D’autre part, par hypothese la suite u est bornée : il existe donc un réel positif M tel que Vn € N*, u,, < M.
D’ot je tire 'estimation —valide pour tout entier naturel non nul n :

0<v, < M
v -
— n = Sn
Comme d’apres la question précédente, la suite (S,,) est divergente vers 400, j’en déduis par opérations
algébriques puis encadrement que la suite (v,,) est convergente de limite 0. A

b. On pose pour tout entier naturel non nul n € N*, w,, = In(1 + v,).

S. Sn+u
Soit m un entier naturel non nul , par définition de v, et w,, on a : 1n( g"’l) =1In (%) =
n n

In(1 + vy,) = wy.
D’autre part, par téléscopage, il vient :

n

an = Z (InSp+1—InS,) =InS, 11 —InSy
k=1 k=1



Par hypothese la suite (S,,) est divergente vers +o00. Par conséquent la somme de partielle de rang n de la
série de terme général w,, est équivalente & In S, 1 qui diverge vers +o00. Donc > w;, diverge. A

c. Comme d’apres la question 2.a (v,) est convergente vers 0, je déduis de I'égalité w,, = In(1 4 v,,) que
Wy, ~ Up

Par suite, les séries Y w, et Y_ v, sont de méme nature. Ainsi, Y v, diverge. A

d. Application : Soit u la suite constante égale a 1. Alors u est bornée et la somme partielle de rang n vaut
Sp = n. Par conséquent la série Y u,, est divergente et le résultat de la question précédente s’applique : la
série de terme général v,, = SL = % diverge. A

3. Séries de Bertrand
Dans cette derniere question on s’intéresse aux séries de Bertand.

Définition : On appelle série de Bertrand toute série ZHZQ Uy, de terme général

1

= e (Inn)s

ot (o, B) € R?
a.lecasa=1
i. Soit (uy) la suite définie pour tout entier n > 2 par u, = 1/n. La somme partielle de rang n vérifie

Sn ~Inn. J’en déduis que
Up+1 o 1 1

S, (n+1)8, “nlnn

1 Un+41
Par conséquent les séries —a termes positifs— de termes généraux 1 et sont de méme nature.
n

nn n
Or, comme la suite u est clairement bornée par 1 et la série harmonique de terme général u,, est
Untl est

divrergente, le résultat de la question 2. permet d’affirmer que la série de terme général
n
divergente.

1
En conclusion, la série de terme général I diverge. A
nlnn

ii. D’apres le théoreme de Pringsheim si (u,,) est une suite de nombre réels décroissante de limite nulle,
alors

Zun converge = u, = o(1/n)

La réciproque est fausse puisque la suite u,, = est décroissante convergente de limite 0, vérifie

nlnn
de plus u,, = o(1/n) mais pourtant la série de terme général u,, est divergente. A
iii.
, 1 1 L
e supposons que § < 1 alors pour tout entier n > 2, > > 0. Par comparaison il s’en
n(lnn)? = nlnn
1
suit que la série de terme général ————— diverge.
n (Inn)?
e supposons que § > 1. La suite u,, = W est décroissante. D’apres le Théoreme 15.15 du cours,
n(Inn
les séries de termes généraux u, et 2¥ ugr sont de méme nature. Or pour tout entier k € N, nous
pouvons écrire
& 2k 1 1 1
2" e = 5= 5= o)y WP
2t (In(24))”  (km2)? (In2)
1
Comme par hypothese, 3 > 1, la série de Riemann de terme général 7 est convergente.
1
Ainsi, la série de terme général ——— converge.
n (lnn)?
En conclusion, nous avons démontré que :
La série de terme général ————— converge si et seulement si 3 > 1. A
n (Inn)?
b. Lecasa # 1



1 Inn 1
— Uy = —, Wy = —— .
n?Inn’ n?’ vn (lnn)26
e la premiere converge par la regle n®u,,. En effet u,, = 0(#) qui est le terme général d'une série de
Riemann convergente.

i. Etudions les séries de Bertrand de termes généraux u,, =

e la deuxiéme converge par la méme régle car v, = o(—2) qui est le terme général d’une série de

n3/2
Riemann convergente.

e la troisiéme diverge par comparaison puisqu’il existe une constante C' > 0 et un entier ng € N tel
que pour tout entier n > ng, on ait w, > C (#) qui est le terme général d’une série de Riemann
divergente. A

ii. Soit 8 € R un réel quelconque.

e Si o« > 1, montrons que la série de terme général u,, = est convergente.

1
ne (Inn)s
Pour cela, posons v = HTO‘ On peut noter que 1 < v < a. Par conséquent, d’apres le théoréeme de
comparaisons des suites de référence :

Y n" N
ot = (lnn)ﬁ n—-+400 0

D’apres la regle “n®“u,,”, il s’en suit que la série de terme général u,, = est convergente.

ne (Inn)B
e Si o < 1, posons comme précédemment v = HT”‘ On peut noter qu’en ce cas a < v < 1. Il en résulte
que
n® (Inn)? 0
ny n—-+o0o

Par conséquent il existe un entier ng tel que pour tout n > ng, n® (In n)ﬁ <n7, ie.

1 1
> —

Vn € N, >ng=> —r—
" e e (Inn)8 = nv

1
Comme la série de Riemann de terme général — est divergente, j’en déduis par le théoreme de
n

1
comparaison des séries a termes positifs que la série de terme général W est elle-méme
n® (Inn

divergente. A



Partie II. Variables aléatoires

1. Préliminaires algébriques

On considere les matrices de M3(R) A = ( ? é ) et I = ( (1) (1) )
26 10
P42
a. 1.14—(10 26)' A
ii. A2=10A-241. A

iii. De I’égalité ci-dessus, je tire fﬁ(A —10 I) x A = I. Par conséquent, A est inversible et

A—lz__l(A_lol):—_l(5 1)

24 24 1 =5
A
b. i. Soit n € N. D’apres la relation polynomiale obtenue a la question 1.a, nous avons :
A2 — T0A™H! 4 244" = A" x (A* =10 A+24]) = A" x0=0
A

ii. Montrons par récurrence double sur n existence de deux suites (an)nen+ et (bn)nen+, récurrentes
linéaires d’ordre 2, telles que pour tout entier naturel non nul n € N*

P(n) =)

b, an

et (501 , (26 10 B B B B
Initialisation : CommeA<1 5>etA (10 9% >,a15,a226, by =1et by =10

conviennent.

Hérédité : Soit n € N* tel que £ (n) et Z(n + 1) soient vraies. Montrons que & (n + 2) l'est aussi.
Par hypothése de récuurence et la relation polynomiale obtenue précédemment, il vient

ATH2 1AM — 94 A" — ( 10a,41 — 24a, 10b,,1 — 24b, )

10by11 — 24b, 10441 — 24a,,

Ainsi

An+2 _ an+2 bn+2
bn+2 An4-2

oll nous avons poseé :

ant2 =10ap41  —24a,
bn+2 = 10 bn-‘,—l _24bn

Conclusion : Nous avons démontré lexistence de deux suites (a,,) et (b,) telles que

Vn € N*, A”<“” b">

b, an

De plus les suites (ay,) et (b,) vérifient les conditions initiales a; = 5,a2 = 26, b1 = 1 et ba = 10 et
les relations de récurrence :

. ant2 = 10an41 —24an,
vn € N, { buvo = 100yt —24b,

A

iii. Pour déterminer I'expression de A™ en fonction de n, j'explicite a,, et b,. Ces suites vérifient la méme
relation de récurrence double,

Vn € N*,  upio = 10ups1 — 24uy,.

L’équation caractéristique
X?-10X+24=0



admet pour racines évidentes 4 et 6. Ainsi le terme général de toute suite (up)nen+ vérifiant cette

relation s’écrit

Up = A4" + 6"

Les conditions initiales déterminent les valeurs de A et p. Namely :

Calcul de a,, :

4N +6p = b5
{ 16X +36p =26 {

D’ou

Calcul de b, :

|
—
S

2p =6 :}{u%
YneN*, a :1(4"—1—6")
) n 2
AN 46p = 1 AN +6p =1 A =1
{ ={"m ={i

16N +36u =

D’ou

2. Jeu de boules

On dispose de deux urnes U; et Us et d’une piece de monnaie non truquée.
Initialement, 'urne U; contient une boule blanche et deux boules noires et I'urne U, contient deux boules noires.

On considere 'expérience aléatoire e suivante :

e on lance la piece :
— si ’on obtient pile, on tire une boule de Uy,
— si on obtient face, on tire une boule de U,

e puis

— si la boule obtenue est noire, elle est remise dans la méme urne

— si elle est blanche elle est changée d’urne.

Pour n entier naturel non nul, on désigne par X,, la variable aléatoire égale au numéro de I'urne dans laquelle
se trouve la boule blanche a l'issue de n répétitions de I'expérience e.

a. Etude de X;

Il est clair que X7(2) = {1,2}. De plus la formule des probabilités totales pour le systéme complet
d’événements non négligeables U; et Us permet de déterminer les probabilités P[X; = 1] et P[X; = 2] :

Y

p[X1 = 2]

o oy —

P | o

Nous en déduisons également E(X;) = 7/6 et V(X;) = 5/36. A

b. Relation de récurrence

On réitere a présent 1’éxpérience e un certain nombre de fois.

Soit n un entier naturel non nul.

i. Supposons qu’a l'issue de de n répétitions de e la boule blanche se trouve dans 'urne 1. En ce cas, la
situation apres n répétitions est la situation initiale :

(X1 = X = 1) = 2 et p([Xnpr = 2[Xn = 1]) =

6

1
6
A

ii. Supposons que X,, = 2. En échangeant les roles de U; et Us dans la question précédente, nous obtenons :

P((Xoir = |[Xn = 2]) = = et p([Xops = 2[[X =) = 2

6



iii. D’apres la formule des probabilités totales pour le systeme complet d’événements non négligeables

(X, =1], [X,, = 2], il vient :

plXny1=1] = = P[X,, =1]

[

6
c. Etude de X,,

Notons pour tout entier naturel non nul n € N*| la matrice colonne V,, = (

i. D’apres la question précédente,

)<

5/6 1/6
1/6 5/6

p[Xn

1
MxV, =
( p[Xn :2]

ii. Une récurrence immédiate montre alors que V,, = M™~'Vy, pour tout entier naturel n non nul V,

M1 x V.

iii. D’apres les résultats préliminaires,

Mnfl — l Anfl —
6

De l'égalité V;, = M1 x V; et de 1}

N = N =

d. Par suite

E(X,) = (1+(2/3)" ) (5/12+2/12)+ (1—(2/3)" ") (1/12+10/12) = % (1+(2/3)" N+—

Dot lim E(X,)=18/12=3/2.

n—oo

1
+ - P[X,, =

|~

+§P[Xn:2]

P[X, = 1]

| =

n+1-

)= (2R 2y

( 1+ (4/6)"!
1— (4/6)

1—(4/6)"! >
1+ (4/6)"1

), nous déduisons facilement :

(1+ @)+ 5 (1 @) |

(L=@3)" ) +-0+ (2/3)"_1)}

D= =

1@z

A
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