
Corrigé du Devoir Libre n◦ 8

Exercice 1 : Suite récurrente

On considère la fonction f définie par : f(x) = ln
(
ex − 1
x

)
.

1. Montrez que f est définie sur R? et que f peut être prolongée en une fonction continue sur R.

• La fonction f est continue sur R? :

En effet, si x 6= 0,
ex − 1
x

> 0 ⇐⇒ x × (ex − 1) > 0. Or, pour x > 0, ex > 1 et pour x < 0, ex < 1. Par

conséquent, pour tout x ∈ R?,
ex − 1
x

> 0. Par composition, il en résulte que f est continue sur R?.

• La fonction f est prolongeable par continuité en 0 :

Posons y(x) =
ex − 1
x

− 1. Comme
ex − 1
x

∼0 1, lim
x→0

y(x) = 0, ainsi,

• lim
x→0

y(x) = 0

• lim
y→0

ln(1 + y) = 0

)
⇒ lim

x→0
f(x) = 0.

N

Désormais f désigne la fonction continue de R dans R.

2. La fonction f est dérivable sur R? et pour tout x ∈ R?,

f ′(x) =
x

ex − 1
×
(
ex − 1
x

)′
=

x

ex − 1
× xex − ex + 1

x2

Posons pour tout x ∈ R?, ϕ(x) = ex(x− 1) + 1, de sorte que ∀x ∈ R?, f ′(x) > 0 ⇐⇒ ϕ(x) > 0. Pour étudier le
signe de ϕ, étudions les variations de cette fonction : ∀x ∈ R, ϕ′(x) = xex. Par conséquent ϕ′(x) est du signe de
x. Nous pouvons résumer ces résultats dans le tableau suivant :

x −∞ 0 +∞
|

ϕ′ − 0 +
|

1 | +∞
ϕ ↘ | ↗

0 | 0
‖

f ′ + ‖ +
‖

0 | +∞
f ↗ | ↗

−∞ | 0

Comme f est strictement croissante sur R−? et R+? et continue en 0, il en résulte que f est strictement
croissante sur R.
Au voisinage de −∞ :

•
• lim

x→−∞

ex − 1
x

= 0+

• lim
t→0+

ln(t) = −∞

⇒ lim
x→−∞

f(x) = −∞.

• ex−1
x ∼ − 1

x −−−−−→x→−∞
0+. En ce cas, nous pouvons en déduire un équivalent de f au voisinage de −∞ :

f(x) ∼−∞ − ln(−x)
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Par conséquent
f(x)
x

∼−∞ − ln(−x)
x

∼−∞
ln |x|
|x|

−−−−−→
x→−∞

0+

Ainsi, au voisinage de −∞, Cf présente une branche parabolique de direction asymptotique (Ox′).

Au voisinage de +∞ : comme x est positif, nous pouvons écrire f(x) = ln(ex − 1)− lnx.

• Or ex − 1 ∼+∞ ex +−−−−−→
x→+∞

∞. Ainsi pouvons-nous en déduire1 un équivalent de f au voisinage de +∞ :

• ln(ex − 1) ∼+∞ x
• ln(x) = o∞(x)

)
⇒ f(x) ∼∞ x

• Ainsi lim
x→+∞

f(x) = +∞ et lim
x→+∞

f(x)
x

= 1.

• De plus

f(x)− x = ln
(
ex − 1
x

)
− x = ln

(
ex − 1
xex

)
= ln

(
1− e−x

x

)
= f(−x)

Or,

• lim
x→+∞

1− e−x

x
= 0+

• lim
t→0+

ln(t) = −∞

⇒ lim
x→+∞

(
f(x)− x

)
= −∞

Ainsi, au voisinage de +∞, Cf présente une branche parabolique de direction asymptotique la droite
d’équation y = x. N

3. On pose g(x) = f(x)− x. Nous avons déjà vérifié dans le calcul ci-dessus que pour tout x ∈ R?, g(x) = f(−x).
Il est clair que cette relation est aussi vérifiée en 0. Ainsi, pour tout x ∈ R,

g(x) = f(−x)

Nous pouvons alors déduire

g(x) > 0 ⇐⇒ f(−x) > 0 ⇐⇒ −x > 0 ⇐⇒ x < 0

Nous pouvons consigner ces résultats dans le tableau qui suit :

x −∞ 0 +∞
0 | +∞

f ↗ | ↗
−∞ | 0

f(x)− x + | −

Ainsi, la courbe représentative Cf est au-dessus de la diagonale si et seulement si x < 0. N

4. On considère la suite définie par u0 = 1 et la relation :

∀n ∈ N, un+1 = f(un)

� L’intervalle R+ est stable pour f , donc la suite u est bien définie et u ∈ (R+)N.

� f| : R+ → R+ est croissante donc u est monotone.

� u0 > 0 donc u1 = f(u0) < u0, par conséquent la suite u est décroissante.

� La suite u étant décroissante et minorée par 0 est convergente vers un point fixe ` de f|.

� Comme 0 est le seul point fixe de f|, u est convergente de limite 0.

N

1cf exo équivalent de ln f
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Exercice 2 : Suite récurrente

Soit f : R → R la fonction définie par

∀x ∈ R, f(x) =
x+ 1√
x2 + 1

− 1

1. Etude de f

a. La fonction f est bien définie et dérivable sur R. De plus pour tout x ∈ R, sa dérivée est donnée par :

f ′(x) =

√
x2 + 1− (x+ 1) 2x

2
√

x2+1

x2 + 1
=

1− x(√
x2 + 1

)3
Ainsi,

∀x ∈ R, f ′(x) > 0 ⇐⇒ x < 1

De plus

• Au voisinage de −∞

x+ 1√
x2 + 1

∼−∞
x

|x|
∼−∞ −1

Par conséquent lim
x→−∞

f(x) = −2.

• Au voisinage de +∞

x+ 1√
x2 + 1

∼+∞
x

|x|
∼+∞ 1

Par conséquent lim
x→+∞

f(x) = 0.

Nous en déduisons le tableau de variations de f :

x −∞ 1 +∞
f ′ + | −√

2− 1
f ↗ | ↘

−2 | 0

N

b. Soit x ∈ R

f(x)− x > 0 ⇐⇒ x+ 1√
x2 + 1

− (x+ 1) > 0 ⇐⇒
(
x+ 1

) ( 1√
x2 + 1

− 1
)
> 0

⇐⇒
(
x+ 1

) (1−
√
x2 + 1√

x2 + 1

)
> 0 ⇐⇒

(
x+ 1

)
×
(
1−

√
x2 + 1

)
> 0.

Comme x2 ≥ 0, avec égalité seulement si x = 0, il en résulte immédiatement que
d’une part (∀x ∈ R),

(
f(x) ≥ x ⇐⇒ x+ 1 ≤ 0

)
et d’autre part (∀x ∈ R),

(
f(x) = x ⇐⇒ x ∈ {−1, 0}

)
.

Nous pouvons reporter ces résultats dans le tableau suivant :

x −∞ −1 0 1 +∞
−1 | 0 |

√
2− 1

f ↗ | ↗ | ↗ | ↘
−2 | −1 | 0 | 0

| |
f − Id + 0 − 0 −

| |

N
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c. Cf eest au-dessus de la première bissectrice lorsque x ≤ −1. N

2. Etude d’une suite récurrente
On considère la suite u définie par u0 ∈ R et la relation

∀n ∈ N, un+1 = f(un)

a. Si u0 = −1 ou u0 = 0 la suite u est bien définie et constante. N

b. On suppose dans cette question que u0 < −1.

i. Soit f| la restriction de f à l’intervalle ] − ∞,−1[. D’après l’étude des variations de f , et d’après le
théorème de la bijection, f| : ]−∞,−1[→]− 2,−1[ est bijective. En particulier, l’intervalle ]−∞,−1[

est stable pour f . Par conséquent, la suite u est bien définie et u ∈
(
]−∞,−1[

)N. N

ii. Comme f| est croissante, la suite u est monotone. De plus comme f − Id est positive sur ]−∞,−1[, la
suite u est croissante. N

iii. Ainsi, u est croissante et majorée par −1 : elle converge vers un point fixe de f|. Comme le seul point
fixe de f| est −1, la suite u est convergente de limite −1. N

c. On suppose ici que −1 < u0 < 0.

� D’après l’étude des variations de f , l’intervalle ] − 1, 0[ est stable par f . Par conséquent la suite u est
bien définie et à valeurs dans ]− 1, 0[.

� Comme f est croissante sur cet intervalle la suite u est monotone.

� Comme f − Id est négative sur ]− 1, 0[, la suite u est décroissante.

� La suite u étant décroissante et minorée par −1 est convergente vers ` = infn un.

� Cmme f est continue ` est un point fixe de f , i.e. ` ∈ {−1, 0}. Comme 0 ne minore pas u, ` = −1,
c’est-à-dire que (un)n∈N est convergente de limite −1.

N

d. On suppose ici que u0 > 0.
Remarquons que f atteint son maximum sur R+ au point 1. Comme f(1) =

√
2 − 1 < 1, la restriction f|

de f à R+ induit une fonction
f| : ]0,+∞[→]0, 1[

En particulier u1 ∈]0, 1[. Etudions la suite (un)n≥1.

� D’après l’étude des variations de f , l’intervalle ]0, 1[ est stable par f . Par conséquent la suite (un)n≥1

est bien définie et à valeurs dans ]0, 1[.

� Comme f est croissante sur cet intervalle la suite (un)n≥1 est monotone.

� Comme f − Id est négative sur ]0, 1[, la suite (un)n≥1 est décroissante.

� La suite (un)n≥1 étant décroissante et positive, elle converge vers ` = infn≥1 un.

� Comme f est continue, ` est nécessairement un point fixe de f , i.e. ` ∈ {−1, 0}. Or par passage à la
limite dans une inégalité, ` ≥ 0. Par conséquent ` 6= −1. Ainsi, (un)n∈N est convergente de limite 0.

N
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Problème 1 : Suites définies implicitement et récurrentes

Soit n un nombre entier naturel non nul. On se propose d’étudeier les racines de l’équation

(En) ex = xn

Dans ce but, on introduit les fonctions fn : R → R définies par

∀x ∈ R, fn(x) = 1− xne−x

de sorte que
x est solution de (En)si et seulement si fn(x) = 0

Partie I. Etude des racines positives de (En)

Préliminaires : Variations des fonctions fn sur R+

Soit n ∈ N? fixé. La fonction fn est dérivable sur R+ et

∀x ∈ R, f ′n(x) = (x− n) xn−1e−x

Par conséquent
∀x ∈ R+, f ′n(x) > 0 ⇐⇒ x > n

Nous en déduisons le tableau de variation suivant :

x 0 n +∞
|

f ′n − 0 +
|

1 | 1
fn ↘ | ↗

fn(n)

1. Etude des racines positives des équations (E1) et (E2)

a. f1 atteint son minimum sur R+ au point 1. Comme f1(1) = 1 − 1
e > 0, (E1) n’admet aucune solution

positive. N

b. f2 atteint son minimum sur R+ au point 2. Comme f2(2) = 1 − 4
e2 > 0, (E2) n’admet aucune solution

positive. N

2. Etude des racines positives de l’équation (E3)

a. f3 atteint son minimum sur R+ au point 3. De plus comme 2 < e < 3 , f3(3) = 1 − 27/e3 est strictement
négatif.

• La restriction de f3 à l’intervalle [0, 3] est une fonction continue et strictement décroissante. D’après
le théorème de la bijection, elle réalise une bijection sur f([0, 3] = [f3(3), 1]. Comme f3(3) < 0 < 1,
0 ∈ f([0, 3]). Par conséquent, il existe une unique solution de (E3) dans l’intervalle [0, 3]. Notons-la u.

• La restriction de f3 à l’intervalle [3,+∞[ est une fonction continue et strictement croissante. D’après le
théorème de la bijection, elle réalise une bijection sur f([3,+∞[= [f3(3), 1[). Comme f3(3) < 0 < 1,
0 ∈ f([3,+∞[). Par conséquent, il existe une unique solution de (E3) dans l’intervalle [3,+∞[. Notons-la
v.

Calculons quelques valeurs de f3 :

– f3(1) = 1− 1
e
> 0

– f3(2) = 1− 8
e2

< 0

– f3(4) = 1− 64
e4

< 0

– f3(5) = 1− 125
e5

> 0
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Ainsi f3(2) < f3(u) < f3(1). Comme f3 est strictement décroissante sur [0, 3], j’en déduis que

1 < u < 2

Comme f3 est strictement croissante sur [3,+∞[, je déduis des inégalités f3(4) < f3(v) < f3(5) l’encadre-
ment :

4 < v < 5

b. Soit (yn) la suite définie par la donnée de y0 > u et la relation de récurrence ∀n ∈ N, yn+1 = ϕ(yn), où
ϕ :]0,+∞[→ R est définie par

∀y ∈]0,+∞[, ϕ(y) = 3 ln y

Remarquons que ϕ est continue et strictement croissante sur R+?. De plus

∀y ∈ R+?, ϕ(y) = y ⇐⇒ ln y3 − y = 0 ⇐⇒ y3 × e−y = 1 ⇐⇒ f3(y) = 0

Par conséquent ϕ possède deux points fixes : u et v.

Remarque : Je donne ci-dessous, la preuve attendue de cette question. J’espère que vous voyez comment
l’étude de ϕ et de ϕ− Id permettrait de répondre plus rapidement à cette question !

• On suppose que u < y0 ≤ v, montrons par récurrence que pour tout entier naturel n, u < yn ≤ v.
Initialisation : ok
Hérédité : Soit n ≥ 0 tel que u < yn ≤ v. Par stricte croissance de la fonction ϕ j’en déduis que
ϕ(u) < yn+1 ≤ ϕ(v). Comme u et v sont fixes pour ϕ, il en résulte at once que :

u < yn+1 ≤ v

Conclusion : par récurrence j’ai prouvé que ∀n ∈ N, u < yn ≤ v. N
• Supposons que y0 ≥ v alors pour tout entier naturel n, yn ≥ v. En effet

Initialisation : ok
Hérédité : Soit n ≥ 0 tel que yn ≥ v. Par croissance de la fonction ln j’en déduis comme précédemment
que yn+1 ≥ 3 ln v. Comme ev = v3, il s’en suit que

yn+1 ≥ v

Conclusion : par récurrence j’ai prouvé que ∀n ∈ N, yn ≥ v. N
• Soit n ∈ N?. Comme la fonction ϕ est strictement croissante sur R+?, il vient

yn+1 − yn > 0 ⇐⇒ 3 ln yn − 3 ln yn−1 > 0 ⇐⇒ yn − yn−1 > 0

Ainsi, le signe de yn+1− yn est le même que le signe de yn− yn−1. Autrement dit, yn+1 et yn sont rangés
dans le même ordre que yn et yn−1. Une récurrence immédiate permet de conclure que la suite (yn)n∈N
est monotone.

Pour conclure quant à la monotonie de la suite yn, nous étudions le signe de ϕ− Id :
Remarquons que pour tout y ∈]0,+∞[,

ϕ(y)− y > 0 ⇐⇒ 3 ln y − y > 0 ⇐⇒ y3e−y > 1 ⇐⇒ f3(y) < 0

D’après le tableau de variation de f3, nous pouvons en déduire que 3 ln y − y > 0 ⇐⇒ y ∈]u, v[. Ainsi :

• Si y0 = v, la suite yn est constante égale à v.

• Si y0 ∈]u, v[, y1 > y0. Par conséquent la suite (yn) ∈ (]u, v[)N est croissante et majorée. Ell converge donc
vers l’unique point fixe de ϕ qui la majore, à savoir v.

• Si y0 ∈]v,+∞[, alors y1 < y0. Par conséquent la suite (yn) ∈ (]v,+∞[)N est décroissante et minorée. Elle
converge donc vers ` ∈ {u, v}. Comme pour tout entier n, yn > v, j’en déduis par passage à la limite
dans une inégalité que ` ≥ v. Il en résulte finalement que yn est convergente de limite v. N

c. On choisit désormais y0 = 4
On admet que

∀(x, y) ∈ [4, 5]2, | lnx− ln y| ≤ 1
4
|x− y|
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Comme y0 = 4 < v, la suite (yn) est croissante vers v. Par conséquent, j’en déduis, grâce aux propriétés de
ϕ, que pour tout entier naturel n ∈ N

0 ≤ v − yn+1 =
(
ϕ(v)− ϕ(yn)

)
= 3

(
ln v − ln yn

)
≤ 3

4
|v − yn|

≤ 3
4
(
v − yn

)
Un récurrence immédiate permet alors de conclure que

∀n ∈ N, 0 ≤ v − yn ≤
(

3
4

)n

(v − y0) ≤
(

3
4

)n

,

la dernière inégalité provenant de l’encadrement 4 = y0 ≤ v ≤ 5.
Ainsi, yn consitue une valeur approchée de v à 10−4 près pourvu que

(
3
4

)n ≤ 10−4, c’est-à-dire dès que
n ≥ 4 ln 10

ln 4−ln 3 . N

d. Soit (xn) la suite définie par la donnée de x0 < v et la relation de récurrence xn+1 = ψ(xn), où ψ : R+? →
R+? est définie par :

∀x > 0, ψ(x) = exp
(x

3

)
Remarquons que ψ est continue et strictement croissante sur R+?. De plus

∀x ∈ R+?, ψ(x)− x > 0 ⇐⇒ ex > x3 ⇐⇒ f3(x) > 0

En particulier, ψ possède deux points fixes : u et v.
Résumons les variations de ψ dans un tableau :

x 0 u v +∞
u | v | +∞

ψ ↗ | ↗ | ↗
1 | u | v

| |
ψ − Id + 0 − 0 +

| |

• La fonction ψ est croissante donc la suite xn est monotone.
• Supposons que u < x0 < v

Dans ce cas, l’intervalle ]u, v[ étant stable par ψ, la suite xn est bien définie à valeurs dans ]u, v[. En
particulier, elle est bornée. Comme de plus ψ− Id est négative sur l’intervalle ]u, v[, j’en déduis que (xn)
est décroissante. Elle st donc convergente vers ` ∈ {u, v}. Comme v ne minore pas la suite (xn), cette
suite est convergente vers u.

• Supposons que x0 = u , en ce cas, la suite est constante.
• Supposons que x0 < u

Dans ce cas, l’intervalle ]0, u[ étant stable par ψ, la suite xn est bien définie à valeurs dans ]0, u[. En
particulier, elle est bornée. Comme de plus ψ − Id est positive sur l’intervalle ]0, u[, j’en déduis que
(xn) est croissante. Etant croissante et majorée, elle converge vers ` ∈ {u, v}. De plus pour tout eniter
n ∈ N, xn < u, j’en déduis par passage à la limite dans une inégalité que ` ≤ u. En particlier ` 6= v. Par
conséquent, la suite (xn) est convergente vers u.

Dans tous les cas, si x0 < v, la suite (xn) est convergente de limite u. N

Remarque : Lorsque x0 est choisi à droite de v, la suite (xn) est croissante à valeurs dans ]v,+∞[. Elle ne
peut converger, ni vers u, ni vers v car aucun de ces deux candidats limites ne majore la suite (xn). Par
conséquent, elle diverge vers +∞.

e. On choisit désormais x0 = 2. On admet que

∀(x, y) ∈ [1, 2]2 | exp(x/3)− exp(y/3)| ≤ 2
3
|x− y|
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On en déduit comme précédemment en utilisant les propriétés de monotonie de la suite (xn) et de la fonction
exp que

0 ≤ xn+1 − u = ψ(xn)− ψ(u) ≤ 2
3
(xn − u)

Enfin, une récurrence immédiate montre que

∀n ∈ N, 0 ≤ xn − u ≤
(

2
3

)n

N

3. Etude des racines positives de l’équation (En), n ≥ 3

a. Nous avons déjà étudié sur l’intervalle [0,+∞[ la fonction fn. Elle est strictement décroissante et continue
sur [0, n]. D’après le théorème de la bijection, elle réalise une bijection de [0, n] sur [fn(n), 1]. D’autre part,
comme n ≥ 3 > e, fn(n) < 0. Par conséquent, 0 ∈ fn([0, n]). L’équation (En) possède donc une unique
solution notée un dans l’intervalle [0, n]. De plus comme fn(1) = 1− 1/e > 0, un > 1.
De la même manière, la restriction de fn à l’intervalle [n,+∞[ est continue et strictement croissante. Elle
réalise d’après le théorème de la bijection une bijection de [n,+∞[ sur [fn(n),+∞[. Comme 0 ∈ f([n,+∞[),
l’équation (En) possède une unique solution notée vn dans [n,+∞[.
Ainsi, l’équation (En) possède exactement deux racines positives qui vérifient en outre les inégalités :

1 < un < n < vn

Le tableau suivant résume ces propriétés :

x 0 un n vn +∞
1 | 0 | 0 | 1

fn ↘ | ↘ | ↗ | ↗
0 | fn(n) | 0

b. Soit n ≥ 4,

fn(un−1) = 1− un
n−1 e

−un = 1− un−1 × un−1
n−1 e

−un︸ ︷︷ ︸
=1

= 1− un−1

Comme n − 1 ≥ 3 par hypothèse, il découle de la question précédente, qie un−1 > 1. Ainsi, fn(un−1) est
négative. D’après les variations de la fonction fn, ceci n’est possible que si un−1 ∈]un, vn[. En particulier,
un−1 > un.
Ainsi la suite (un)n≥3 est décroissante. Comme d’autre part, (un) est minorée par 1, elle est convergente
vers ` ≥ 1. N

c. Soit n ∈ Nstar, par construction, fn(un) = 0, d’où on tire un
n = eun , puis un = exp(un/n).

Or la suite un étant convergente, elle est en particulier bornée. Il en résulte que la suite (un/n)n∈N? est
convergente de limite nulle comme produit d’une suite convergente de limite 0 et d’une suite bornée. J’en
déduis par unicité de la limite :

un = exp un

n
↙ ↘
` = 1

Ainsi lim
n→∞

un = 1.

D’autre part pour tout entier non nul n ∈ N?, un − 1 = eun/n − 1. Or

• lim
n→∞

un

n
= 0

• et − 1 ∼0 t

)
⇒ un − 1 ∼ un

n
∼ 1
n

D’où, finalement

un − 1 ∼ 1
n

N
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d. Soit n ≥ 4 nous avons comme précédemment

fn(vn−1 = 1− vn−1 < 0

Il en résulte que vn−1 ∈]un, vn[. En particulier vn−1 < vn.
Ainsi, la suite (vn)n≥3 est strictement croissante. Comme de plus vn > n, la suite (vn) est divergente vers
+∞. N

e. On pose pour tout réel x > 1, g(x) = x− lnx.
• La fonction g :]1,+∞[→ R est dérivable (donc continue) en tout point de ]1,+∞[ et

∀x > 1, g′(x) = 1− 1
x
> 0

Par conséquent g est continue et strictement croissante. D’après le théorème de la bijection, g réalise une
bijection de ]1,+∞[ sur ] lim

x→1
g(x), lim

x→+∞
g(x)[=]1,+∞[. N

• Soit n ∈ N?, comme vn = evn/n, il en résulte que
vn

n
= ln vn. Par conséquent

g(vn/n) =
vn

n
− ln

vn

n
= ln vn − ln vn + lnn = lnn.

N
• Soit n ∈ N?, de l’égalité ci-dessus, je tire :

vn

n
= g−1 (lnn). Or, d’après le théorème de la bijection

lim
y→+∞

g−1(y) = sup g−1(]1,+∞[) = sup]1,+∞[= +∞. Ainsi , par composition des limites

• lim
n→∞

lnn = +∞
• lim

y→+∞
g−1(y) = +∞

)
⇒ lim

n→∞
g−1(lnn) = +∞

Par conséquent
lim
→
∞

vnn = +∞

• Remarquons que lim
x→+∞

g(x)
x

= 1. En particulier, par composition des limites

• lim
n→∞

vn

n
= +∞

• lim
x→+∞

g(x)
x

= 1

⇒ lim
n→∞

g(vn/n)
vn/n

= 1

Comme g(vn/n) = lnn, j’en déduis finalement que

lim
n→∞

n lnn
vn

= 1

Autrement dit
vn ∼ n lnn

N

Partie II. Etude des racines négatives de (En)

1. Existence des racines négatives de (En)
a. Soit k ∈ N?

∀x < 0, f2k(x) = 1− x2ke−x

f ′2k(x) = x2k−1e−x(x− 2k)

En particulier f2k est continue et strictement
croissante sur R−. Le tableau suivant consigne
ces propriétés :

x −∞ 0
1

f2k ↗
−∞

∀x < 0, f2k+1(x) = 1− x2k+1e−x

f ′2k+1(x) = x2ke−x(x− 2k − 1)

En particulier f2k+1 est continue et stricte-
ment décroissante sur R−. Le tableau suivant
consigne ces propriétés :

x −∞ 0
+∞

f2k+1 ↘
1
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b.
Comme lim

x→−∞
f2k(x) = −∞, la fonction

continue et strictement croissante f2k réalise
d’après le théorème de la bijection, une bijec-
tion de ]−∞, 0] sur ]−∞, 1].
Comme 0 ∈ f2k(] − ∞, 0]), l’équation (E2k)
possède une unique solution négative.

Comme lim
x→−∞

f2k(x) = +∞, la fonction

continue et strictement déroissante f2k+1

réalise d’après le théorème de la bijection, une
bijection de ]−∞, 0] sur [1,+∞[.
Comme 0 /∈ f2k(]−∞, 0]), l’équation (E2k+1)
ne possède aucune solution négative.

Ainsi, l’équation (En) possède des solutions négatives si et seulement si n est pair.

De plus, si tel est le cas, (En) possède une unique solution négative. N

2. Etude des racines négatives de l’équation (E2n)

a. Notons wn l’unique solution négative de l’équation (E2n).
Comme f2n(−1) < 0 < f2n(0), il découle de la croissance stricte de f2n l’encadrement

−1 < wn < 0

N

b. Soit n ≥ 2, nous avons

f2n(wn−1) = 1− w2n
n−1 e

−wn

= 1− w2
n−1 × w

2(n−1)
n−1 e−wn︸ ︷︷ ︸

=1

= 1− w2
n−1.

Comme d’après la question précédente, |wn−1| < 1, il s’en suit que f2n(wn−1) > 0, i.e. f2n(wn−1) > f2n(wn).
Comme f2n est strictement croissante, il en résulte que

wn−1 > wn

Par conséquent la suite (wn)n≥1 est strictement décroissante. Comme d’après la première question wn ∈
]− 1, 0[, j’en déduis que wn est convergente vers ` ≥ −1. N

c. Montrons que ` = −1. Ecrivons pour tout entier n ∈ N?,w2
n = exp wn

n . Comme de plus wn est négative, j’en
déduis que

wn = − exp
wn

2n

Comme (wn) est bornée, la suite
(
wn/2n

)
est convergente de limite nulle. Par unicité de la limite, il en

résulte de façon tout à fait analogue à la question 3.c que lim
n→∞

wn = −1. N

d. En composant la limite lim
n→∞

wn/2n = 0 et l’équivalent usuel pour la fonction exp au voisinage de 0, j’en
déduis fiinalement que

wn + 1 = 1− ewn/2n ∼ −wn

2n
∼ 1

2n
N
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