CORRIGE DU DEVOIR LIBRE N° 8

EXERCICE 1 : SUITE RECURRENTE

T _1
On considére la fonction f définie par : f(x) =1n (e . )

1. Montrez que f est définie sur R* et que f peut étre prolongée en une fonction continue sur R.
e La fonction f est continue sur R* :
. e’ —1
En effet, si z # 0,

>0 < zx(e"—1)>0.Or, pour z >0, ¢* > 1 et pour z <0, ¢* < 1. Par
x

conséquent, pour tout x € R*,

> 0. Par composition, il en résulte que f est continue sur R*.
e La fonction f est prolongeable par continuité en O :

T _ 1 T
¢ —1.Commee

o lir% y(x) =0 )

e limIn(l1+y)=0
y—0

Posons y(z) = ~o 1, iin% y(x) = 0, ainsi,

= lim f(z) = 0.

z—0

Désormais f désigne la fonction continue de R dans R.

2. La fonction f est dérivable sur R* et pour tout z € R*,

F(x) = x x(e””—l)': x XJUBI—BI—Fl

x et —1 2

Posons pour tout x € R*, p(x) = e®(x — 1) + 1, de sorte que Vz € R*, f'(x) > 0 <= () > 0. Pour étudier le
signe de ¢, étudions les variations de cette fonction : Vo € R, ¢'(z) = ze®. Par conséquent ¢’ (x) est du signe de
z. Nous pouvons résumer ces résultats dans le tableau suivant :

T | —00 0 +00
, - |
) 0 +
|
1 | +o0
@ N | /
0| O
|
o R
0 | +o0
/ /! | /!
—00 | 0

Comme f est strictement croissante sur R™ et R™ et continue en 0, il en résulte que f est strictement
croissante sur R.
Au voisinage de —oo :

et —1

° lim =0t .
T——o0 = lim f(z) = —o0.
e lim In(t) = —c0 T——00
t—0t+
T _ re . 7 . . .
° % ~ —% ——— 0%. En ce cas, nous pouvons en déduire un équivalent de f au voisinage de —oco :

r— —00

f(@) ~ oo —In(—2)



Par conséquent

flz) | In(-x) el .
x x |J,‘| T— —00

Ainsi, au voisinage de —oo, Cy présente une branche parabolique de direction asymptotique (Oz’).

Au voisinage de +o0o : comme z est positif, nous pouvons écrire f(z) = In(e* — 1) — Inz.

e Ore® — 1~ e® —— oo. Ainsi pouvons-nous en déduire! un équivalent de f au voisinage de +oo :

r—+00
e In(e® —1) ~j0
o In(z) =0 (2) > = fl@) voo
e Ainsi lim f(z) =+4oco et lim fz) =1.
T—+00 r—+oo I
e De plus
v 1 v 1—e®
f(x)—:z::ln(e >—x:ln<e ):ln(e>:f(—:c)
T re” T
Or,
1—e™"*
lim —— =0"
* SR 7 = lim (f(z)—z)=-o0
. lim+ In(t) = —o0 T—+00
t—0

Ainsi, au voisinage de +o0o, C; présente une branche parabolique de direction asymptotique la droite
d’équation y = x. A

3. On pose g(z) = f(z) — . Nous avons déja vérifié dans le calcul ci-dessus que pour tout € R*, g(z) = f(—=x).
11 est clair que cette relation est aussi vérifiée en 0. Ainsi, pour tout = € R,

Nous pouvons alors déduire
9(2) >0 <= f(-2)>0 << —2>0 < <0

Nous pouvons consigner ces résultats dans le tableau qui suit :

x -0 0 +00
0 | +o0
f /! | /
—00 | 0
flx) —a + | -
Ainsi, la courbe représentative Cy est au-dessus de la diagonale si et seulement si x < 0. A

4. On considere la suite définie par ug = 1 et la relation :
VYneN, upi1 = fluy)

v L’intervalle R* est stable pour f, donc la suite u est bien définie et u € (RT)N.

v fj : RT — R* est croissante donc u est monotone.

V' ug > 0 donc u; = f(ug) < ug, par conséquent la suite u est décroissante.

v La suite u étant décroissante et minorée par 0 est convergente vers un point fixe £ de f|.

v/ Comme 0 est le seul point fixe de f|, u est convergente de limite 0.

Lcf exo équivalent de In f



EXERCICE 2 : SUITE RECURRENTE

Soit f : R — R la fonction définie par
z+1
Vz € R, )= ——1
/(@) z2+1

1. Etude de f

a. La fonction f est bien définie et dérivable sur R. De plus pour tout x € R, sa dérivée est donnée par :

/r2 _ 2x
f'(z) = Al @t Vager __1-=
2 +1 ( xQ—l—l)S

Ainsi,
VzeR, fl(z)>0 < z<1

De plus

e Au voisinage de —oo
z+1 z
2 +1 T H -
Par conséquent lim f(z) = —2.
=00
e Au voisinage de 400

z+1 T
2 +1
Par conséquent lim f(z) =0.
r——+00

Nous en déduisons le tableau de variations de f :

T | —00 1 +o00
f + | -
V2-1
f /! | N\
-2 | 0
b. Soit z € R
flz)—z>0 <= LH—(Q@+1)>O = (z+1) (1—1 >0
2+ 1 Va? 41
1—vz2+1
= (z+1) (;:_I) >0 <= (z+1)x (1-Va2+1)>0.
x
Comme 22 > 0, avec égalité seulement si x = 0, il en résulte immédiatement que
d’une part (VzeR), (f(z)>2z < z+1<0)
et d’autre part (Vz €R), (f(z)=2 < z€{-1,0}).
Nous pouvons reporter ces résultats dans le tableau suivant :
x —0 —1 0 1 400
-1 | 0 | V2-1
f / | / | / | N\
-2 I | 0 | 0
| |
f—1d + 0 — 0 —

| |




c. Cy eest au-dessus de la premiere bissectrice lorsque x < —1. A

2. Etude d’une suite récurrente
On considere la suite u définie par ug € R et la relation

V€N, i = flun)

a. Siug = —1 ou ug = 0 la suite u est bien définie et constante. A

b. On suppose dans cette question que ug < —1.

i. Soit f| la restriction de f & I'intervalle | — oo, —1[. D’apres I’étude des variations de f, et d’apres le
théoreme de la bijection, f]: ] — oo, —=1[—] — 2, —1] est bijective. En particulier, I'intervalle | — oo, —1|

est stable pour f. Par conséquent, la suite u est bien définie et u € (] — 00, 71[)N. A

ii. Comme f| est croissante, la suite u est monotone. De plus comme f — Id est positive sur | — oo, —1], la
suite u est croissante. A

iii. Ainsi, u est croissante et majorée par —1 : elle converge vers un point fixe de f|. Comme le seul point
fixe de f| est —1, la suite u est convergente de limite —1. A

c. On suppose ici que —1 < ug < 0.

v D’apres létude des variations de f, l'intervalle | — 1,0[ est stable par f. Par conséquent la suite u est
bien définie et & valeurs dans | — 1,0[.

v Comme f est croissante sur cet intervalle la suite u est monotone.
v Comme f — Id est négative sur | — 1,0[, la suite u est décroissante.
v La suite u étant décroissante et minorée par —1 est convergente vers ¢ = inf,, u,,.

v Cmme f est continue ¢ est un point fixe de f, i.e. £ € {—1,0}. Comme 0 ne minore pas u, £ = —1,
c’est-a-dire que (uy, )nen est convergente de limite —1.

A

d. On suppose ici que ug > 0.
Remarquons que f atteint son maximum sur R au point 1. Comme f(1) = v/2 — 1 < 1, la restriction 1
de f & RT induit une fonction
f| : }0, +OO[—>]O, 1[
En particulier uq €]0, 1[. Etudions la suite (uy)n>1-

v D’apres létude des variations de f, U'intervalle ]0, 1] est stable par f. Par conséquent la suite (wy)n>1
est bien définie et & valeurs dans |0, 1].

v Comme f est croissante sur cet intervalle la suite (u,)n>1 est monotone.
v Comme f — Id est négative sur |0, 1[, la suite (uy)n>1 est décroissante.
v La suite (u,)n>1 étant décroissante et positive, elle converge vers ¢ = inf,,>1 wy,.

v/ Comme f est continue, ¢ est nécessairement un point fixe de f, i.e. £ € {—1,0}. Or par passage & la
limite dans une inégalité, £ > 0. Par conséquent £ # —1. Ainsi, (u,)nen est convergente de limite 0.

A



PROBLEME 1 : SUITES DEFINIES IMPLICITEMENT ET RECURRENTES

Soit m un nombre entier naturel non nul. On se propose d’étudeier les racines de I’équation

(E) et ="

Dans ce but, on introduit les fonctions f,, : R — R définies par
Ve eR, fuolz)=1—a"e"

de sorte que

’:z: est solution de (E,)si et seulement si f(z) = O‘

Partie I. Etude des racines positives de (£))
Préliminaires : VARIATIONS DES FONCTIONS f,, SUR Rt
Soit n € N* fixé. La fonction f,, est dérivable sur RT et
Ve eR, fl(x)=(zx—mn)a"te "

Par conséquent
Ve eRT, fl(z)>0 < x>n

Nous en déduisons le tableau de variation suivant :

z |0 n 400
|
foo- 0+
|
1 | 1
In N\ | /!

1. Etude des racines positives des équations (F;) et (E2)

1

a. fi atteint son minimum sur R* au point 1. Comme fi1(1) = 1 — ¢ > 0, (£1) n’admet aucune solution

positive.
4

b. f» atteint son minimum sur R* au point 2. Comme f5(2) = 1 — 5% > 0, (E») n’admet aucune solution

€
positive.

2. Etude des racines positives de ’équation (Fj3)

a. f3 atteint son minimum sur R* au point 3. De plus comme 2 < e < 3, f3(3) = 1 — 27/e? est strictement

négatif.

e La restriction de f3 a lintervalle [0,3] est une fonction continue et strictement décroissante. D’apres
le théoreme de la bijection, elle réalise une bijection sur f([0,3] = [f3(3),1]. Comme f5(3) < 0 < 1,
0 € f([0,3]). Par conséquent, il existe une unique solution de (E3) dans I'intervalle [0, 3]. Notons-la u.

e La restriction de f3 & lintervalle [3,4o00[ est une fonction continue et strictement croissante. D’apres le
théoréme de la bijection, elle réalise une bijection sur f([3,+oo[= [f5(3),1[). Comme f5(3) < 0 < 1,
0 € f([3,400[). Par conséquent, il existe une unique solution de (Fs3) dans U'intervalle [3, +o0c[. Notons-la

.

Calculons quelques valeurs de f3 :

,f3(1)21_2>0 —f3(4):1—§—;4<0
S RE)=1-5 <0 R =112 50



Ainsi f3(2) < f3(u) < f3(1). Comme f3 est strictement décroissante sur [0, 3], j’en déduis que

Comme f3 est strictement croissante sur [3, +00], je déduis des inégalités f3(4) < f3(v) < f3(5) I'encadre-

ment :

. Soit (yn) la suite définie par la donnée de yo > wu et la relation de récurrence Vn € N, y,11 = ©(yn), ou
¢ :]0, +00[— R est définie par
Vy €]0,+00f,  ¢(y) =3Iny

Remarquons que ¢ est continue et strictement croissante sur RT*. De plus
Yy eR™, py)=y <= Iny’ —y=0 <= y’xe V=1 < f3(y) =0

Par conséquent ¢ possede deux points fixes : u et v.

Remarque : Je donne ci-dessous, la preuve attendue de cette question. J’espére que vous voyez comment
I’étude de ¢ et de p — I'd permettrait de répondre plus rapidement & cette question !

e On suppose que u < yg < v, montrons par récurrence que pour tout entier naturel n, v < y, < v.
Initialisation : OK
Hérédité : Soit n > 0 tel que u < y, < v. Par stricte croissance de la fonction ¢ j'en déduis que
o(u) < Ynt1 < (v). Comme u et v sont fixes pour ¢, il en résulte at once que :

U< Yny1 SV

Conclusion : par récurrence j’ai prouvé que Vn € N, u < y, < v. A
e Supposons que yo > v alors pour tout entier naturel n, y, > v. En effet

Initialisation : OK

Hérédité : Soit n > 0 tel que y,, > v. Par croissance de la fonction In j’en déduis comme précédemment

que Yn41 > 3Inv. Comme e¥ = v3, il s’en suit que

yn+1 Z v

Conclusion : par récurrence j’ai prouvé que Vn € N, y,, > v. A
e Soit n € N*. Comme la fonction ¢ est strictement croissante sur R, il vient

Ynt1 — Yn >0 <= 3lny, —3lny,—1 >0 < y, —yn_1 >0

Ainsi, le signe de y,+1 — Yy est le méme que le signe de y,, — y,—1. Autrement dit, y, 41 et y, sont rangés
dans le méme ordre que y,, et y,—1. Une récurrence immédiate permet de conclure que la suite (y,)nen
est monotone.

Pour conclure quant a la monotonie de la suite y,, nous étudions le signe de ¢ — Id :
Remarquons que pour tout y €]0, +o00],

oy) —y>0 <= 3lny—y>0 < Pe¥>1 < f3(y) <0

D’apres le tableau de variation de f3, nous pouvons en déduire que 3lny —y > 0 < y €Ju, v[. Ainsi :
e Si yg = v, la suite y,, est constante égale a v.

e Siyg €]u,v], y1 > yo. Par conséquent la suite (y,,) € (Ju,v)" est croissante et majorée. Ell converge donc
vers I'unique point fixe de ¢ qui la majore, a savoir v.

e Siyg €]v, +o0], alors y; < yo. Par conséquent la suite (y,,) € (Ju, +00[) est décroissante et minorée. Elle
converge donc vers ¢ € {u,v}. Comme pour tout entier n, y, > v, j’en déduis par passage & la limite
dans une inégalité que ¢ > v. Il en résulte finalement que y,, est convergente de limite v. A

. On choisit désormais yo = 4

On admet que

1
V(x,y)€[4,5]2, |lnx—lny\§1|x—y|



Comme yg = 4 < v, la suite (y,) est croissante vers v. Par conséquent, j'en déduis, grace aux propriétés de
(, que pour tout entier naturel n € N

0<v—Ypir (o(v) = @(yn))
= 3 (lnvflnyn)
< 3\
=7 V= Yn|
3
< Z(U _yn)

Un récurrence immédiate permet alors de conclure que

anNa Oﬁvynﬁ(i);) (Uy0)§(3> )

la derniere inégalité provenant de ’encadrement 4 = yg < v < 5.
Ainsi, y,, consitue une valeur approchée de v & 10~* prés pourvu que (%)n < 1074, c’est-a-dire des que

In 10
n241n4—1n3' A

d. Soit (z,,) la suite définie par la donnée de zy < v et la relation de récurrence @, 11 = ¥(z,,), ot ¢ : R** —
R** est définie par :

Yo >0, ¢(x)=exp (g)

Remarquons que v est continue et strictement croissante sur RT™*. De plus

3

Ve e R™, (x)—2>0 &= " >12° < f3(x) >0

En particulier, ¥ posséde deux points fixes : u et v.
Résumons les variations de 1) dans un tableau :

T 0

(@ / /

u

v —1d +

u
|
|
|
|
0
|

e La fonction v est croissante donc la suite z,, est monotone.

e Supposons que u < xg < v
Dans ce cas, l'intervalle |u, v[ étant stable par 1, la suite z,, est bien définie & valeurs dans Ju,v[. En
particulier, elle est bornée. Comme de plus ¢ — Id est négative sur Uintervalle |u, v[, j’en déduis que (z;,)
est décroissante. Elle st donc convergente vers ¢ € {u,v}. Comme v ne minore pas la suite (z,,), cette
suite est convergente vers u.

e Supposons que g = u , en ce cas, la suite est constante.

e Supposons que xg < U
Dans ce cas, l'intervalle |0, u[ étant stable par v, la suite x, est bien définie & valeurs dans ]0,u[. En
particulier, elle est bornée. Comme de plus @ — Id est positive sur l'intervalle ]0,u[, j’en déduis que
(x,,) est croissante. Etant croissante et majorée, elle converge vers ¢ € {u,v}. De plus pour tout eniter
n € N, z, < u, j’en déduis par passage a la limite dans une inégalité que ¢ < u. En particlier ¢ # v. Par
conséquent, la suite (z,,) est convergente vers u.

Dans tous les cas, si xg < v, la suite (x,) est convergente de limite w. A

Remarque : Lorsque xg est choisi a droite de v, la suite (x,,) est croissante & valeurs dans |v, +ocl. Elle ne
0 ) ’

peut converger, ni vers u, ni vers v car aucun de ces deux candidats limites ne majore la suite (z,). Par

conséquent, elle diverge vers +oo.

e. On choisit désormais xg = 2. On admet que

Yia,y) € 1,2 |exp(a/3) — exply/3)] < 2l — y]



On en déduit comme précédemment en utilisant les propriétés de monotonie de la suite (x,,) et de la fonction
exp que

0<zp1 —u= T/J(ZH) - w(u) < (mn - u)

Wl N

Enfin, une récurrence immédiate montre que

vneN, 0<z,—u

IA
N
W b
~——

3

3. Etude des racines positives de I’équation (E,), n > 3

a. Nous avons déja étudié sur Uintervalle [0, +oo] la fonction f,,. Elle est strictement décroissante et continue
sur [0,n]. D’apres le théoréme de la bijection, elle réalise une bijection de [0, n] sur [f,(n), 1]. D’autre part,
comme n > 3 > e, fp(n) < 0. Par conséquent, 0 € f,([0,n]). L’équation (E,) posseéde donc une unique
solution notée u,, dans Uintervalle [0, n]. De plus comme f,(1) =1—1/e > 0, u,, > 1.

De la méme maniere, la restriction de f,, a Uintervalle [n,+oo[ est continue et strictement croissante. Elle
réalise d’aprés le théoreme de la bijection une bijection de [n, +oo[ sur [f,(n), +oo[. Comme 0 € f([n, +o0[),
léquation (E,,) posséde une unique solution notée v,, dans [n, +o00|.

Ainsi, 'équation (F,) possede exactement deux racines positives qui vérifient en outre les inégalités :

1 <u, <n<uv,

Le tableau suivant résume ces propriétés :

z |0 Un, n Up +00
1 | 0 | 0 | 1
fn N | N | / | /
0 | fn(n) | 0
b. Soit n > 4,
fro(un_1) = 1T—ul'_; e ™ =1—u, | xu'"} e
—_———
=1
= 1l—up

Comme n — 1 > 3 par hypothese, il découle de la question précédente, qie u,—1 > 1. Ainsi, f,(u,—1) est
négative. D’apres les variations de la fonction f,,, ceci n’est possible que si u,_1 €Juy,, v,[. En particulier,

Up—1 > Up.
Ainsi la suite (uy,)n>3 est décroissante. Comme d’autre part, (u,) est minorée par 1, elle est convergente
vers £ > 1. A

c. Soit n € N®tar, par construction, f,(u,) =0, d’ou on tire v = e, puis u, = exp(u,/n).
Or la suite u, étant convergente, elle est en particulier bornée. Il en résulte que la suite (u,/n)pen+ est
convergente de limite nulle comme produit d’une suite convergente de limite 0 et d’une suite bornée. J’en
déduis par unicité de la limite :

Un
n

Uy, = €xp

e
L = 1

Ainsi lim w, = 1.
n—oo

D’autre part pour tout entier non nul n € N*, u,, — 1 = e“»/® — 1. Or

U
e lim ==0 U, 1
n—oo N S U, — 1~ —~—
° etleot n n
D’ou, finalement

1

Up — 1~ —

n



d. Soit n > 4 nous avons comme précédemment
fn(vnfl =1-v,1<0

11 en résulte que v, —1 €]u,, v,[. En particulier v,_1 < v,.

Ainsi, la suite (vy,)n>3 est strictement croissante. Comme de plus v, > n, la suite (v,) est divergente vers

+00. A
e. On pose pour tout réel z > 1, g(x) =z — Inx.

e La fonction g :]1,+oo[— R est dérivable (donc continue) en tout point de |1, 4+o00[ et

1
Ve>1, ¢(x)=1-=>0
x

Par conséquent g est continue et strictement croissante. D’apres le théoreme de la bijection, g réalise une
bijection de ]1, +oo[ sur ] lim1 g(x), hr_{} g(z)[=]1, +o0l. A
xr— T—1T00

. . P Un )
e Soit n € N*, comme v,, = e»/", il en résulte que — = Inw,,. Par conséquent
n

g(vp/n) = In = lnv, —lnv, +lnn =lnn.
n n

A
v

e Soit n € N*, de D'égalité ci-dessus, je tire : — = g~ ' (Inn). Or, d’apres le théoreme de la bijection
n

lirf g (y) =supg '(]1, +o0]) = sup]l, +oo[= +oo. Ainsi , par composition des limites
yﬂ o0

= lim g *(Inn) = +o0

n—oo
o n— o0

e Ilim Inn =400
lim ¢~ (y) = +oo

y—+00

Par conséquent

lim v, n = 400

=)

T
e Remarquons que lirf M = 1. En particulier, par composition des limites
Tr— 400 €T
e lim — =+
nee ng(x) = lim 9(vn/n) =1
° lim == =1 n—oo /M
r— 400 €T
Comme g(v,/n) = Inn, j’en déduis finalement que
1
lim 22—
n—oo ’Un
Autrement dit
U, ~nlnn
A
Partie I1. Etude des racines négatives de (F),)
1. Existence des racines négatives de (E,)
a. Soit k € N*
Vo <0, for(z) =1 — 2?ke™® Vo <0, forsr(x) =1 — 2%FFle®
forla) = 2 te™" (x — 2k) Fopi (@) = 2®e " (x — 2k — 1)
En particulier fo, est continue et strictement En particulier for11 est continue et stricte-
croissante sur R™. Le tableau suivant consigne ment décroissante sur R™. Le tableau suivant
ces propriétés : consigne ces propriétés :
r | —o0 0 x —00 0
1 +00
fok / Jak+1 N
—00 1




Comme mli)m(ﬁ for(z) = —oo, la fonction Comme wgmw for(z) = +oo, la fonction
continue et strictement croissante foj réalise continue et strictement déroissante for41
d’apres le théoreme de la bijection, une bijec- réalise d’apres le théoreme de la bijection, une
tion de | — 00, 0] sur | — oo, 1]. bijection de | — o0, 0] sur [1, +oo].

Comme 0 € faor(] — 00,0]), I'équation (FEay) Comme 0 ¢ for,(] — 00,0]), 'équation (Eqp1)
possede une unique solution négative. ne possede aucune solution négative.

Ainsi, I’équation (F, ) possede des solutions négatives si et seulement si n est pair.

De plus, si tel est le cas, (F,) posséde une unique solution négative. A
2. Etude des racines négatives de 1’équation (Es,,)

a. Notons w,, 'unique solution négative de I’équation (Ea,).
Comme fo,(—1) < 0 < f2,(0), il découle de la croissance stricte de f2, ’encadrement

—“1l<w, <0
A
b. Soit n > 2, nous avons

2 —Wn

f2n(wn71) = 1- wnril e
= 1-wl | x wi(_"l_l) e v
—— —

=1
= 1-w? .

Comme d’apres la question précédente, |w,—1| < 1,1l s’en suit que fo,, (wp—1) > 0,1.e. fon(wp—1) > fon(wy).
Comme fy, est strictement croissante, il en résulte que

Wp—1 > Wp

Par conséquent la suite (wy,)n>1 est strictement décroissante. Comme d’aprés la premiere question w,, €

] —1,0], j’en déduis que w, est convergente vers ¢ > —1. A
c. Montrons que ¢ = —1. Ecrivons pour tout entier n € N* w2 = exp “n. Comme de plus w, est négative, j'en
déduis que
w,
Wy = — €XP %
Comme (w,) est bornée, la suite (w,/2n) est convergente de limite nulle. Par unicité de la limite, il en
résulte de fagon tout a fait analogue a la question 3.c que lim w, = —1. A
n—oo
d. En composant la limite lim w,/2n = 0 et I’équivalent usuel pour la fonction exp au voisinage de 0, j'en
n—oo
déduis fiinalement que
w 1
Wy +1=1—¢eWn/?" v 2 —
" 2n  2n
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